Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928465

RESUMO

INTRODUCTION: General anesthesia is associated with the development of atelectasis, which may affect lung ventilation. Electrical impedance tomography (EIT) is a noninvasive imaging tool that allows monitoring in real time the topographical changes in aeration and ventilation. OBJECTIVE: To evaluate the pattern of distribution of pulmonary ventilation through EIT before and after anesthesia induction in pediatric patients without lung disease undergoing nonthoracic surgery. METHODS: This was a prospective observational study including healthy children younger than 5 years who underwent nonthoracic surgery. Monitoring was performed continuously before and throughout the surgical period. Data analysis was divided into 5 periods: induction (spontaneous breathing, SB), ventilation-5min, ventilation-30min, ventilation-late and recovery-SB. In addition to demographic data, mechanical ventilation parameters were also collected. Ventilation impedance (Delta Z) and pulmonary ventilation distribution were analyzed cycle by cycle at the 5 periods. RESULTS: Twenty patients were included, and redistribution of ventilation from the posterior to the anterior region was observed with the beginning of mechanical ventilation: on average, the percentage ventilation distribution in the dorsal region decreased from 54%(IC95%:49-60%) to 49%(IC95%:44-54%). With the restoration of spontaneous breathing, ventilation in the posterior region was restored. CONCLUSION: There were significant pulmonary changes observed during anesthesia and controlled mechanical ventilation in children younger than 5 years, mirroring the findings previously described adults. Monitoring these changes may contribute to guiding the individualized settings of the mechanical ventilator with the goal to prevent postoperative complications.


Assuntos
Respiração Artificial , Tomografia , Adulto , Humanos , Criança , Respiração Artificial/métodos , Impedância Elétrica , Tomografia/métodos , Ventilação Pulmonar , Pulmão/diagnóstico por imagem , Anestesia Geral/efeitos adversos
2.
Pediatr Pulmonol ; 57(11): 2681-2687, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931651

RESUMO

OBJECTIVES: To evaluate the effects of four flow rates on the functional residual capacity (FRC) and pulmonary ventilation distribution while using a high-flow nasal cannula (HFNC). WORKING HYPOTHESIS: Our hypothesis is that flow rates below 1.5 L·kg-1 ·min-1 lead to FRC loss and respiratory distress. STUDY DESIGN: A single-center, prospective clinical study. PATIENT SELECTION: Infants diagnosed with acute viral bronchiolitis were given HFNC. METHODOLOGY: Through a prospective clinical study, the effects of four different flow rates, 2.0, 1.5, 1.0, and 0.5 L·kg-1 ·min-1 , on FRC and the pulmonary ventilation pattern were evaluated using electrical impedance tomography. The impedance variation (delta Z), end-expiratory lung volume (EELZ), respiratory rate, heart rate, respiratory distress score, and saturation/fraction of inspired oxygen ratio (SpO2 /FI O2 ), were also evaluated at each flow rate. RESULTS: Among the 11 infants included, There was a decrease in respiratory distress score at a flow rate of 1.5 L·kg-1 ·min-1 (*p = 0.021), and at a flow rate of 2.0 L·kg-1 ·min-1 (**p = 0.003) compared to 0.5 L·kg-1 ·min-1 . There was also a small but significant increase in SpO2 /FiO2 at flow rates of 1.5 (*p = 0.023), and 2.0 L·kg-1 ·min-1 (**p = 0.008) compared to 0.5 L·kg-1 ·min-1 . There were no other significant changes in the clinical parameters. In the global EELZ measurements, there was a significant increase under a flow rate of 2.0 L·kg-1 ·min-1 as compared to 0.5 L·kg-1 ·min-1 (p = 0.03). In delta Z values, there were no significant variations between the different flow rates. CONCLUSION: The ∆EELZ increases at the highest flow rates were accompanied by decreased distress scores and improved oxygenation.


Assuntos
Bronquiolite , Síndrome do Desconforto Respiratório , Bronquiolite/terapia , Cânula , Impedância Elétrica , Humanos , Lactente , Medidas de Volume Pulmonar , Oxigênio , Oxigenoterapia , Estudos Prospectivos , Tomografia
3.
BMC Pulm Med ; 21(1): 357, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749685

RESUMO

INTRODUCTION: Electrical impedance tomography (EIT) is a noninvasive, radiation-free, bedside tool to monitor ventilation distribution in real time. OBJECTIVE: To evaluate, in pediatric COVID-19 patients, the ventilation distribution using EIT and compare it to thoracic computed tomography (TCT) or chest radiograph results obtained in these patients. METHODS: This was a prospective, observational clinical study including pediatric patients admitted to the intensive care unit of a private hospital. The patients monitored with EIT tested positive for COVID-19 and were submitted to the previously mentioned radiation exams. EIT monitoring lasted 15 min and no sedation was used. RESULTS: Six patients were included in this study. The main differences observed in the EIT were in the right-left distribution and were compatible with the morphological changes found in the TCT or radiograph images due to COVID-19 infection. CONCLUSION: We conclude that EIT is ready to investigate the ventilatory profile present at different lung diseases, including COVID-19, and might postpone or mitigate the need of repeated ionizing radiation exams in the pediatric population, although larger pediatric cohorts comparing to standard radiological imaging are needed.


Assuntos
COVID-19/diagnóstico por imagem , Impedância Elétrica , Tomografia/métodos , COVID-19/terapia , Criança , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos
4.
Diabetol Metab Syndr ; 9: 100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259658

RESUMO

BACKGROUND: Type 1 diabetes patients have a higher risk of developing hypoglycemia or hyperglycemia during physical activity, which may compromise their safety during exercise but results regarding the exercise capacity of patients with type 1 DM when compared to control subjects have been contradictory. AIM: To evaluate if type 1 diabetes affects the capacity of adolescents to exercise. METHODS: The study enrolled 37 adolescents in stage 2-4 of the Tanner scale, aged from 10 to 14 years, 21 with type 1 diabetes and 16 without any chronic diseases. All subjects performed an incremental submaximal exercise test in a cycle ergometer. At the end of every test stage, glycemia and blood lactate levels were measured. During the test, heart rate was monitored and the Borg rating of perceived exertion (RPE) was used to assess fatigue. RESULTS: The two groups displayed no significant differences in anthropometric variables. The response to exercise, as evaluated by Borg RPE (p = 0.829), maximum oxygen uptake (VO2max) (p = 0.977), heart rate (p = 0.998), maximum load (p = 0.977), absolute load at lactate threshold (p = 0.377) and relative load at lactate threshold (p = 0.282), was also similar between the control and the type 1 diabetes group. Finally, there were no significant correlations between HbA1c levels, VO2max, duration of disease and pre-test glycemia levels. CONCLUSIONS: We detected no significant differences in lactate threshold, VO2max and heart rate during exercise between healthy adolescents and non-sedentary adolescents with type I diabetes, indicating that both groups had similar physical fitness and, therefore, that type 1 diabetes is not an obstacle for physical activity. This study was approved by the ethical committee of the Hospital Israelita Albert Einstein (Ethical Committee Number: 53638416.9.0000.0071) and free and informed consent was obtained from all participants and their legal representatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...